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LIFT DEVELOPED ON UNRESTRAINED RECTANGULAR WJNGS ENTERING GUSTS AT SUBSONIC
AND SUPERSONIC SPEEDS 1

By HARVARDLOiUAX

SUMMARY

The object of this report is to provide an estimate, based on
theoreticalcalculations, of theforces induced on a wing that is
jlying at a constantfomard speed and suddenly enters a ver-
tical gmt. The calculations illustrate the efects of Mach
number ~rom 0 to 2] and aspect ratio (2 to w], and solutions
are given by means of which the response to gwsts having ar-
bilrawJdistributions of velocity can be calculated. The e$ects
oj pitch<ngand wing bending are neglected and only wings of
rectangular plan form are cormidered. Speci$c results are
presented for sharp-edged and triangular gwsts and various
wing-air denm”tyratios.

INTRODUCTION

Studies of the gust-response problem for restrained wings
(wings of infinite mass) entering sharp-edged gusts at super-
sonic speeds are already well advanced. Miles, Strang,
Biot, and Heaslet and Lomax (refs. 1, 2, 3, and 4) presented
solutions to such problems for two-dimensional wings;
Miles and Goodman (refs. 5 and 6) presented solutions for
rectangular wings having tip Mach cones that do not intersect
the opposite edge. Miles and Strang (refs. 7 and 8) gave
results for a triangdar wing with supersonic edges. Theo-
retical studies restricted to incompressible flow fields contain
the classical solutions due to Wagner (ref. 9), Kussner (ref.
10), and von Kdrmiln and Sears (ref. 11), the former con-
taining the solution for the indicial lift on a two-dimensional
sinking wing and the latter two containing the solution for
the lift on a restrained two-dimensional wing entering a
sharp-edged gust. The extension of these studies to include
the gust response for wings of finite aspect ratio has ,been
carried out by Jones (ref. 12). Later, further extensions to
include the effects of gust shape as well as aspect ratio have
been made by Zbrozek (ref. 13) and Bisplinghoff, Isakson,
and O’Brien (ref. 14).

The purpose of the present report is twofold: first, to
present solutions for a two-dimensional restrained wing
entering a sharp-edged gust at sonic and subsonic lMach
numbers (specifically, Mach numbers equal to 1.0, 0.8, and
0.5); and second, to use these results together with those
mentioned above to estimate the effect of wing aspect ratio
and airplane mass on the lift response for airplanes flying at
various speeds through the Mach number range from O to 2
and penetrating both triangular and sharp-edged gusts.

A list of symbols is given in the appendix.

ANALYSIS
THEEQUATIONOFMOTION

If induced pitching moments are neglected, the motion of
a rigid wing disturbed from its equilibrium position by
arbitrary external lifting forces is governed by Newton’s
second law. Thus, if w is the vertical velocity of the wing
and m its mass, we can write

m $=x forces (1)

where the forces to be summed are the aerodynamic ones due
to the gust velocity and the motion of the wing from its
position of equilibrium.

First, consider the force that results from a small vertical
motion of the wing. Suppose the wing has been flying in
steady level flight at a constant speed U. up to a time t’= O.
lb an xyz coordinate system in space (z positive upward)
such that at t’= Othe y axis lies along, and the origin on, the
wing leading edge and, further, such that the wing is moving
in the negative z direction. For t’> O the wing moves
away from these coordinates, continuing forward at the
constant speed 770along the negative x axis, and now also
moving downward at a constant rate —w= UOa. The
transientlifting force on the wing induced by such a maneuver
shall be referred to as the indicial lift (positive upward) and
designated in coefficient form by the symbols cl= or CL=for
section or total lift values, respectively.

Given the indicial lift coefficient, one can show by using
the prinicples of superposition that the lift due to an arbitrary
variation of angle of attack caused by the vertical velocity
of the wing can be determined from the relation

L (t’)=,–& $ J:’c~=(t’–t,’).w (t,’) dt{ (2a)

Next, consider the force that is induced on a wing pene-
trating a sharp-edged gust having a uniform upward velocity
Wo. If the wing is restrained so that it can move neither
upward nor downward (corresponding in flight to the limiting
case of infinite wing maes), the section or total lift coefficients
induced by a unit value of wJUOwill be designated cl~ or
CA,, respectively. Figure 1 illustrates the differences be-
tween the boundary conditions for, and the initial variations
of cl= and CZOfor a two-dimensional wing traveling at a
subsonic speed.
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Given a value of G~O,one obtains the lift on a restrained
wing flying into a ~~st having an arbitrary vertical velocity
distribution, w=(t’), by the relation

srj5’ d t’
L (~’)=a ~ ~ CLg(t’+’) UJ.(4’)dt: (2b)

Substituting equations (2a) and (2b) into equation (l),
one finds ~he exqn-essionfor the vertical motion of an unre-
strained wmg flybg into a gust; thus,

dw_
J

(@ d “
‘nz––nz Q

CL=(t;–t/) W (t{) dt,’+

J
@ d “——
U, dt’ o

Cjg(t’–tl’) w=(h’) dh’ (3a)

Since W=(t,’) is assumed to be given; equation (3a) is an
integml equation—in terms of w(t’)-of the second kind
with a variable upper limit. It is convenient first to study
equation (3a) when the gust is a step function (sharp-edged
gust). For this case wa(tl’) becomes a constant wO,say, and
equation (3a) reduces to

~~” (y!3cl t’

J
‘Sw”CLg(t’)(3b)

dt’=–z~ O
C.a(t’–t,’) w (t,’) dt,’+~

The solution to equation (3b) can be used to find the
induced force on an unrestrained wing entering a gust of
arbitrary structure. Methods for solving the integral
equation and applying its solution will be developed in the
subsequent sections.

INDICIALLIFTONASINKINGWING

‘l’he analysk involved in calculating the indicial lift force
on the wing is based on the assumptions that underlie linear-

ized, thin-airfoil wing theory in general. Mathematically,
these assumptions imply that the governing partial cliffer-
ential equation of the flow field is the three-dimensional wave
equation. In terms of the velocity potentitd p and for an
axial system fixed relative to the still air at intinityj the wave
equation can be written

$%x+ $%-l- Pzz= $% (4)

where tis the product of the speed of sound a. and the time f‘.
For awing moving in the z= Oplane, the boundary conditions
are that p is continuous everywhere except across the wing
and its vortex wake, (p.)Z=o is a constant over the region
bounded by the wing plan form at any given time, and all
velocities vanish outside the starting wave envelope.

All values of C~aand c,= used herein have been presented
in previously published reports. The indicial Iifti on n
sinking rectangular wing traveling at supersonic speeds has
been presented by Miles (ref. 5). As the aspect ratio tends
to infinity, this solution approaches that for the two-dimsm-
sional case given in references 1, 2, 31 and 4. At sonic and
subsonic speeds, results for a two-dimensional wing are
available for Mach numbers equal to 1.0, 0.8, and 0.5 (ref. 15)
and for the incompressible case (ref. 16). Finally, the
indicial lift on sinking wings of finite aspect ratio in incom-
pressible flow is presented in reference 12. Curves showing
the effect of Mach number on the two-dimensional values
are presented in figure 2 (a), and the effect of aspect ratio a~
supersonic speeds is indicated in figure 2 (b). Tabuhw
values for the two-dimensional wing flying at Mach numbers
equal to 0.5 and 0.8 are given in tables I and II, respectively.
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RESPONSEOFARESTRAINEDWINGTo ASHARP-EDGEDGUST

Load distribution,—The lift induced on a restrained wing
penetrating a sharp-edged gust can also be determined by
solving equation (4) subject to the proper boundary condi-
tions.z For a wing moving in the z=O plane, these condi-
tions are similar to those given for the indicial lift on a sinking
wing in that all velocities vanish outside the starting wave
envelope and w is continuous everywhere except across the
wing and its vortex wake, but differ from the indicial case
in tbat (P.)..O is a constant only over the portion of the
wing plan form that b&s penetrated the gust, being zero
over the remaining portion (see fig. 1). This problem has
been solved for a rectangular wing traveling at supersonic
speeds by Miles (ref. 5) and, ag”ain,as the aspect ratio tends
to infinity, this solution approaches that for the two-dmen-
sional case given in references 1, 2, 3, and 4. Two-dimen-
sional wings flying at .he speed of sound and two- and three-
dimensional wings flying in an incompressible medium have
also been considered (refs. 4, 16, and 12, respectively).

The problem of finding the two-dimensional gust response
at subsonic speeds can be solved by the same method that
was used in reference 15 to find the two-dimensional subsonic
indicial response. For these cases equation (4) reduces to

%+ %z= Pu (5)

2ltIsinterestingtonotothatthegustliftfunctionCJOconberelatedtotheindicialresponse
[ollowhwnstepvorfnttorrofansleofattackunderqui~ generalconditionsbythereciprocal
tbeoroms given in reference 17.

md the boundary conditions for a section in the tt plane are
ndicated in figure 3.
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I’he solutions obtained for the load coefficient over regions
1 and 2 shown in figure 3 can be written (details of the
malysis are omitted):
For region 1

Ap Ap 8“
d

fMo(t—z)..— =_—

()

(6a)
!19q~ 7r(l+.MO) x+ Mot

For region 2

[

2K _EF’(~)+KE’(#)–KF’(y) 1}(6b)
\/(t2—z~(l —.L140q 4(z+Mo0(c-z-340t)

The symbols .?7,K, E’(4), and l“ (~) are elliptic integrals
defined in the appendix, their modulus k being given by

d._ (t+z)(l+MJ-2ck– (t+z)(l +.MO)
(7)

and their argument Y by

$=mc sin
d

X+ Mot (8)
c

EquaLions (6a) and (6b) give the loading over the complete
wing section for values of t less than or equal to 2c/(1–llloz).
Since I140t/cequals U#/c, the number of chord lengths trav-
eled, these equations represent the exact linearized solution
for the section load distribution during the time required
for the wing to travel 2.Alo/(1-M02)chord lengths after reach-
ing the gust front. Hence, for a Mach number equal to 0.8,
equations (6) establish the gust response during the first 4.44
chord lengths ~f travel after the gust penetration. Figure 4
shows the variation of gust loading Ap/qg throughout this
interval and also, for comparative purposes, the indlcial load
variation Ap/qa for the first four chord lengths of travel.
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FIGURE4.—Gust and indicial loading on two-dimensional wing,
MO=O.8.

The dashed curves in figure 4 represent the final steady-state
load distribution adjusted so as to give the same total lift as
the exact solutions for the gust and indicial cases at UJ’/c
equal to 4.44 and 4, respectively. Thus, to the degree of
accuracy indicated in figure 4, the gust and indicial loadings
at MO= 0.8 can be approximated for larger values of Ud’/c
by the exqmssions

and

z=,#mm%?f’%%5Y “b)
Ap

The variation of cl=and c,. for values of u#/c greater than
4 will be discussed presently.

l’or a Mach number equal to 0.5, equations (6) are su.fii-
cient to establish the gust response for only the first 1.33
chord lengths traveled. Further calculations were carried
out and the exact loading was established for both the gust
and indicial cases for values of i7#/c less than or equal to
2.33. Thes’e calculations were for the most part numerical
and no simple closed expressions such as those presented in
equations (6) were obtained. I?ighre 5 contains the results.
Again, the dashed curves represent the iinal adjusted steady-

)

state load distribution indicating that the gust and indicial
loadings for MO=0.5 can also be appro.simated for larger
values of uOt’/c by the equations (9).

Section Mt.—When integrated across the chord at a fued
time, the loadings shown in figures 4 and 5 give the variation
of the lifting force on the wing section during the early portion
of the response. In the interval O< ‘C70f/c<MJ(l+MJ
equation (6a) integrates to give

c1 Ullt’. 4
()

—=clg= ~ —wQ/uo m
(lo)

In the intem’al Mo/(l +Mo)s Uot’/c< 2M0/(1—M$) the ex-
pression for the loading is too complicated to integrate
analytically and the section Iift was calculated by numerical
methods. The results, together with those for Cla (taken
from ref. 15), are given in figure 6. Since, as timo goes on,
cl= must approach cl=, the curve for the gush response was
simply faired into the curve for the indicial response in the
manner shown by the dashed lines. Finally, for values of
UOt’/cgreater than 10, the following equations, taken from
reference 1, can be used:
For MO=0.5, ~

{

1.333 44.218
Czg= Cla=

&l ‘5+ 2(UO#/C)-[5 + 2(U#/c)]2 1
(ha)
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The final curves (determined from the previous analysis
and aforementioned references) for cl~,the section M-tcoeff-
icientdeveloped on a restrained wing ‘entering a sharp-edged
gust, are shown in figure 7(a) for Mach numbers equal to
O,0.5, 0.8, 1.0, 1.2, 1.41, and 2.0. Tabular values are given

TABLEI.—VALUESOF C{=AND cl=FOR 11o=0..5

%!’[c \m$cl.J2 , il—.Mo%$2.

in tables I and II for Mach numbers cqucd to 0.5 ancl 0.S.
The effect of aspect ratio at a Mach number equal to 1.41
is shown in figure 7 (b).

TABLE 11.—VALUESOF c{. AND cf. I?OR NIo=0.8

RESPONSEOF AN UNRESTRAINEDWING TO A SHARP-EDGED GUST

Given the indicial lift response C& and the response for a
restrained -wingpenetrating a sharp-edged gust CL~,one can
use equation (3) to find the motion of ctnunrestrained wing
entering a sharp-edged gust having a constant upwarcl
velocity wo. As in reference 4, the lift on the unrestminecl
wing can be related to an infinite series of integrals involving
c~a and ~Lg. First, set

Uot’ u&’~.— ~l.—
c’ c

2m——. ——
:0 a’ ‘—pots

so that, by integrating equation (3) with respect to t’, one
finds

J J
w=; o’cLg(T,)dT,+:o’CL=(7–T,)W(7JZT1= o (12)

.
Then use the relation

*=(dw/dr) (#/WI))
WolUo

and iterate equation (12) using Liouville’s methocl of suc-
cessive substitutions. (See ref. 1S.) This yields

X’–=cL (+A ‘
J
~ ~CL=(T–r,)C&,)dT,+ x

wJ Uo g

J
-j o“CL=(T—n)dT1

J
‘1CLa(~,–Tz)CLg(~2)dTz–. . . (13)

o

Equation (13) converges uniformly 3for alJT, By means

~The statementmadefn refererm 4 on the convergence of thfs series fc unneccsmrlly
restrictive. Sfncethegreatest values of Cr,=and CL=are CLrC (CO) and CLg (co), the 6011eHd ~Crlll
of the series does not e..ceed

+ [%(-)1” c..(=)
K“N’’J?+ J’”-’d’n

that is, doss not exwed

$ [cLa(m)]. cL=(cO)* r-

andby theratiotesttheseriesconvergasrmfforrrrly.
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of it, C../(w~o)o) and cJ(wo/Uo), the total and section lift
coefficients induced on unrestrained wings entering a sharp-
cdged gust, have been calculated and the results are shown in
figure 8. Table III indicates the range of Mach numbers and
aspect ratios for which calculations were made, the numbers
in the chart referring to the individual figures in -which the
results are presented. It should be noted that results are
given for a wing flying at 340=1 and having a finite aspect
ratio. Such cases can be calculated from the indicial and
restrained gust responses presented in reference 5. These
responses are still valid at .MO=1 for values of the time
variable up to that for which the wave envelope induced by
one side of the wing crosses the opposite side. A wing of
mpect ratio 5 flying at the speed of sound travels 13 chord
lengths during this time interval, and this is sticient to
establish the significant part of the response to a sharp-
edged gust for p<300.

TABLE 111.—VALUESOF MACH NUINfBERAND ASPECT
RATIO FORWHICHCALCULATIONSWERE CARRIFJDOUT

r\ I I I I

l\A12151ml
.lfo\ \

1 I I I I

The chart also shows that the gust response for the
unrestrained wing was calculated at MO= O for an infinite-
aspect-ratio wing (for comparative purposes) but not for
finite-aspect-ratio wings. The gust response on both intinite-
and finite-aspect-ratio wings in incompressible flow has been
studied extensively by means of operational methods in
references 12, 13, and 14. Where comparisons can be made,
the results obtained in this report using equation (13) agree
well with those given in the references mentioned.

ItESPONSE OF UNRESTRAINED WING TO ARBITRARY GUST

The function C!!/(wSO/~Jpresented in the previous section
can be thought of as the indlcial gust response for lift on an
unrestrained wing. In this sense it is apparent that the
lift on a wing penetrating a gust in which w is a function of
the chord lengths traveled can be calculated by superposi-
tion and is represented by the integral

J
‘CL(TI)W(r–71) ~r,

CL=& o wolvo UO (14)

By means of equation (14), the lift induced on a wing moving
at the constant speed UOand entering a gust, the vertical
velocity of which starts at zero and increases linearly with
distance of penetration, is simply the integral of Oz/(wO/UJ.
Thus, representing the section lift coefficient developed by a
wing entering a gust with a unit gradient by the symbol CL,,
we can write

(15)

If the wing flies into a gust with a triangular-shaped dis-
tribution of w, having its maximum intensity w, a distance h

chord lengths from the front, it follows at
resulting lift response CL/(wJUJ is given by

CL –
WJCJO

139

once that the

&(T-2h)]; 2h<7

(16)

Examples of the various gust shapes and the responses in
lift and ~ertical motion of wings penetrating them are shown
in figure 9.

Voriation of gust intensity -----
Poth of point on wing —. —.-

Variotian of lift an wing —

b
7-

CL—-
Wj/u. ‘\\

FIGURE9.—Gust shapes and responses.

MAXIMUMLIFTDUETO GUSTPENETRATION
SHARP-EDGEDGUST

Consider the maximum increase in lift caused by the
entry of the wing into a sharp-edged gust. This increment
is given for the range of Mach numbers, aspect ratios, and
wing-air density ratios shown in table III by the maximum
values of” CL/(wO/UO)and cZ/(wo/Uo)on the curves shown in
fi=~e 8.

First, let us consider wings of iniinite aspect ratio. For
such wings the variation of the maximum gust-induced lift
coefficient with Mach number is shown in figure 10, and a
cross plot in which MOinstead of p is held constant is pre-
sented in figure 11. The values for p= coare the steady-state
values given by the simple equations

()
c1—.

(2.I-3[0<1

wO/uO ma.z
t4/JM~Mo>l

The difference between the lift increment on a restrained
wing and that on one with a finite value of K is seen to be
most pronounced at thehigh subsonic Machnumbers. ATotice,
for example, that the percentage increase in [cr/(wo/uo)l~~
found by increasing MO from O to 0.8 is 67 for P= ~
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FIGURE11.—lIaximum gust-induced lift on two-dimensional wings.

(Prandtl Glauert rule) but only 37 for p=200. Table IV
indicates the relative increase in [cJ(wO/UJ]~=zcaused by
compressibiMy for three -different values of the wing-air
density ratio. ~

TABLE IV.—PERCENT I~CREASll Ih’ (C/). . . R13LATIVII TO
ITS VALUE AT Mo= O.

r\ I I 1 I

I
“\\p

.
Mo\\ I

300 I 204 I
o 0

6! 3!
1:: m 1%
1.2

8s
–4 10 12

I I I I J

Consider next the effect of aspect ratio on the maximum
lift increment induced on a rectangular wing penetrating a
sharp-edged ~mst. When p= o this increment is again given
by the steady-state value of the lift-curve slope and is
presented f& A= co, 5, and 2, in figure 12. These stetldy-
state values are taken from the numerous studies made of
lifting surfaces traveling at subsonic and supersonic speeds.
On the supersonic s:de, for cases in which ~~~ >1, tho
equation (see, e. g., ref. 19)

C.() 4

(
1– l_—wO/Uo maz=~Mx 2A4M02— 1)
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FIGURE 12.—Maximum increment of lift induced on restrained rectangular wing entering a uniform sharp-edged gust.

npplics and, for cases in which 1~A~~ ~ O, the curves
in reference 20 were used. On the subsonic side the portions
of tile curves in the range O<A~l —Moz<2 were again taken
from reference 20. The results in references 19 and 20 are
sufficient to cover the entire Mach number range for the
A= 2 wing. For the A= 5 wing the values on the subsonic
side outside the range O<A~~S 2 were talien from a
curve 4 that was compiled from a large number of solutions
for lifting surfaces traveling at subsonic speeds.

‘rhc values of [OL/(wO/Z7J]ma=for rectangular wings
traveling at supersonic speeds, given in figure 8, and the
incompressible-flow solutions, given in references 12, 13,
and 14, were used to prepare the curves in figure 13. The
dashed lines between the Mach numbers of O and that for
which A~~= 1 are interpolated, the two-dimensional
results presented in fi=~re 10 lending credence to the validity
of the interpolation. Figure 14 presents the aspect-ratio
effect on [CL/(wo/Uo)]~==at MO= 1.

It should be noted that in the vicinity of Mo= 1, the curves
for which A= w, p= w (figs. 10 and 12), and probably also

~The mrrvo was taken from an article prepared by Robert T. Jones and Doris Coben for
the forthcoming series on High-Speed Aerodynamics and Jet Propulsion, Princeton Uni-
vem!ty Press.

those for which A=5, p= co (figs. 12 and 13 (a)), are not
valid representations of the gust-induced lift on actual wings
flying at these speeds, although they do represent solutions
to equation (4) consistent with the boundary conditions
previously discussed. For the two cases mentioned, the
assumptions on which equation (4) is based are violated.
These assumptions are more closely approached, however,
as the wing-air density ratio and the aspect ratio decrease.
Hence, for lower values of A and p the solutions given herein
for wings traveling in the transonic speed range have justifi-
cation on a physical as well as a mathematical basis.

TRIANGuLAR GUST

The masimum increase in lift on a two-dimensional wing
passing through a triangular .~st having its masimum
intensity 12 chord lengths from its front is shown in fiagre 15.
For the lower values of P, the variation of [cl/(wt/’Uo)]maz

with Mach number is similar to that calculated for the
sharp-edged ~mst and shown in figure 10. As P increases,
however, a comparison of the results shown in these two
figures indicates the importance of the assumed gust shape in
estimating the maximum ~~st-induced lift. Table V shows
the difference in the compressibility effect obtained for the
sharp-edged and triangular (12 chord lengths to apex) gusts.
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FXGURE13.—Masimum increment of lift induced on a rectangular wing entering a uniform sharp-edged gust.

TABLEV.—RATIOOFTHEVALUEOF (CL)... AT lfO= 0.SAND
1.0 TO ITS VALUEAT Mo=O.

afo=o.s Mo=l.o

shag? Tri- sL!LgJ Tri-
angle angle

—, —, — —

1.24 1.44 L 51
1.29 i% 1.59 :5J
1.37 1.33 1.8s
1.39 1.34 2.03 1:70
1.66 L 3s - 1.s5

Figure 16 presents the aspect-ratio effect on the maximum
ift response for rectangular wings penetrating triangular-
shaped gusts. The values at MO=O were calculated from
the results given in reference 12 and again the dashed lines
represent an interpolation.

CONCLUDINGREMARKS

Results are presented for the lift developed by a restrained
two-dimensional wing flying at a Mach number equal to 0.5

5

or 0.8 and penetrating a sharp-edged gust. Simhr results
are reviewed for Mach numbers equal to O, 1.0, 1.2, 1.41,
and 2.

A method is given whereby the lift can be estimated
(neglecting the effects of airplane pitching and wing bending)
for unrestrained rectangular wings in the aspect-ratio range
2 ~ m, flyingintheMach number range Oto 2, and penetrat-
ing gusts of arbitrary structure. Specific results are given
for sharp-edged and triangular-shaped gusts.

,In general, given variations in the wing aspect ratio, the
~%g-air density ratio, and the gust shape have their mrwi-
mum effect on the gust lift when the wing is flying at a
high subsonic speed.

Aams AERONAUTICAL LABORATORY
NATIONAL ADVISORY COMMITTEE FOR AIiIRONAUTICS

MOFFETT FIELD, CALIF., Feb. $, 196S.
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APPENDIX ●

OF SYMBOLS

A
%
c

c.

c1

E’

E’($)

F’(#)

9

h

K

k
k’
L
M,
??2
Ap
T

q

s
t’
t
u,

:=(t’)
Wl)
W$
x, y, z

a

P.

Po

7

4

+

aspect ratio
speed of sound
chord length

L
fig ~t coefficient, —I@
section lift coefficient, ~qc
complete elliptic integral of second kind with

modulus 1
incomplete elliptic integral of second kind with

modulus k’ and argument Y
incomplete elliptic integral of first kind with modu-

lus k’ and argument ~

2
number of chord lengths from front to apex of

triangular gust
complete elliptic integral of first kind with modu-

klSk
modulus of elliptic integrals (See eq. (7).)

m
Iiit on wing
hlach number at -whichwing is traveling
mass of wing
loading coefficient, pressure on lower wing surface

minus Fressure on upper wing surface divided
by dynamic pressure

dynamic pressure:; pou$

wing area
time
(let’

borizont al velocity of wing
vertical velocity of wing
velocity of arbitrary ~~st
velocity of uniform, sharp-edged gust
masimum velocity of triangular gust
Cartesian coordinates fixed with reference to still

airatinfinity, zpositive upward, y parallelto wing
leading edge, negative x direction corresponding
to dmection of wing motion

wing angle of attack
2m

wing-air density ratio, — in analysis of completep@S’
g~\\?ing,— inanalysis of wing section
poc~

air density

Uot’chord lengths traveled by wing, ~

perturbation velocity potential
arawmentof elliptic integrals (See eq. (S).)

Subscripts:
9

s
a

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

response of restrained wing to unit, sharp-edged
gust

response to gust with unit velocity gradient
indicial response on sinking wing
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